An Asymptotic Analysis of the Bootstrap Bias Correction for the Empirical Cte

نویسندگان

  • Jae Youn Ahn
  • Nariankadu D. Shyamalkumar
چکیده

The -level Conditional Tail Expectation (CTE) of a continuous random variable X is defined as its conditional expectation given the event {X q }, where q represents its -level quantile. It is well known that the empirical CTE (the average of the n(1 ) largest order statistics in a sample of size n) is a negatively biased estimator of the CTE. This bias vanishes as the sample size increases but in small samples can be significant. Hence the need for bias correction. Although the bootstrap method has been suggested for correcting the bias of the empirical CTE, recent research shows that alternate kernel-based methods of bias correction perform better in some practical examples. To further understand this phenomenon, we conduct an asymptotic analysis of the exact bootstrap bias correction for the empirical CTE, focusing on its performance as a point estimator of the bias of the empirical CTE. We provide heuristics suggesting that the exact bootstrap bias correction is approximately a kernel-based estimator, albeit using a bandwidth that converges to zero faster than mean square optimal bandwidths. This approximation provides some insight into why the bootstrap method has markedly less residual bias, but at the cost of having higher variance. We prove a central limit theorem (CLT) for the exact bootstrap bias correction using an alternate representation as an l distance of the sample observations from the -level empirical quantile. The CLT, in particular, shows that the bootstrap bias correction has a relative error of n . In contrast, for any given ε 0, and under the assumption that the sampling density is sufficiently smooth, relative error of order O(n 1/2 ε) is attainable using kernel-based estimators. Thus, in an asymptotic sense, the bootstrap bias correction as a point estimator of the bias is not optimal in the case of smooth sampling densities. Bootstrapped risk measures have recently found interest as estimators in their own right; as an application we derive the CLT for the bootstrap expectation of the empirical CTE. We also report on a simulation study of the effect of small sample sizes on the quality of the approximation provided by the CLT. In support of the bootstrap method we show that the bootstrap bias correction is optimal if the sampling density is constrained only to be Lipschitz of order (or, loosely speaking, to have 1 –2 only half a derivative). Because in practice densities are at least twice differentiable, this optimality result largely fails to make the bootstrap method attractive to practitioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: On Nonparametric Estimation of the CTE

The Conditional Tail Expectation (CTE) is gaining an increasing level of attention as a measure of risk. It is known that the empirical CTE is negatively biased as an estimator of the CTE, and that this bias can be practically significant for small sample sizes. This talk will present results relating to this phenomemnon. First, we show that unbiased estimation is not possible for most nonparam...

متن کامل

Optimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data

The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

Limiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model

The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...

متن کامل

Parametric bootstrap methods for bias correction in linear mixed models

The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM) is useful for the small area estimation, and the estimation of the mean squared error (MSE) of EBLUP is important as a measure of uncertainty of EBLUP. To obtain a second-order unbiased estimator of the MSE, the second-order bias correction has been derived mainly based on Taylor series expansions. However, thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010